تبديل القائمة
تبديل القائمة الشخصية
غير مسجل للدخول
سيكون عنوان الآيبي الخاص بك مرئيًا للعامة إذا قمت بإجراء أي تعديلات.

الفرق بين المراجعتين لصفحة: «قانون الأعداد الكبيرة»

ينص قانون الأعداد الكبيرة رسميًا على أنه إذا كانت لدينا عينة من قيم مستقلة وموزعة توزيعًا متطابقًا فإن متوسط هذه العينة يقترب من المتوسط الحقيقي.
لا ملخص تعديل
لا ملخص تعديل
سطر 63: سطر 63:


يمكن استبدال الاستقلال المتبادل للمتغيرات العشوائية بالاستقلال الزوجي <ref>{{cite journal|last1=Etemadi|first1=N. Z.|date=1981|title=An elementary proof of the strong law of large numbers|journal=Wahrscheinlichkeitstheorie Verw Gebiete| volume=55| issue=1| pages=119–122| doi=10.1007/BF01013465|s2cid=122166046|doi-access=free}}</ref> أو قابلية التبادل<ref>{{Cite journal| last=Kingman|first=J. F. C.|date=April 1978|title=Uses of Exchangeability|journal=The Annals of Probability| language=en| volume=6|issue=2|doi=10.1214/aop/1176995566|issn=0091-1798|doi-access=free}}</ref> في كلا شكلي قانون الأعداد الكبيرة.
يمكن استبدال الاستقلال المتبادل للمتغيرات العشوائية بالاستقلال الزوجي <ref>{{cite journal|last1=Etemadi|first1=N. Z.|date=1981|title=An elementary proof of the strong law of large numbers|journal=Wahrscheinlichkeitstheorie Verw Gebiete| volume=55| issue=1| pages=119–122| doi=10.1007/BF01013465|s2cid=122166046|doi-access=free}}</ref> أو قابلية التبادل<ref>{{Cite journal| last=Kingman|first=J. F. C.|date=April 1978|title=Uses of Exchangeability|journal=The Annals of Probability| language=en| volume=6|issue=2|doi=10.1214/aop/1176995566|issn=0091-1798|doi-access=free}}</ref> في كلا شكلي قانون الأعداد الكبيرة.
يختص الفرق بين الشكل القوي والشكل الضعيف بنمط التقارب الذي يؤكد عليه.  لمعرفة تفسير هذه الأنماط، راجع تقارب المتغيرات العشوائية.
===القانون الضعيف===
{{multiple image  |align =left|width1=50 |image1=Blank300.png
|width2=100 |image2=Lawoflargenumbersanimation2.gif |footer=محاكاة توضح قانون الأعداد الكبيرة. تُقلب عملة معدنية حمراء من جانب وزرقاء من الجانب الآخر في كل إطار، وتضاف نقطة في العمود المقابل. يوضح المخطط الدائري نسبة اللونين الأحمر والأزرق. لاحظ أنه على الرغم من أن النسبة تختلف اختلافا كبيرا في البداية، إلا أنها تقترب من 50٪ مع زيادة عدد التجارب.
|width3=50 |image3=Blank300.png}}
ينص القانون الضعيف للأعداد الكبيرة (ويسمى أيضا قانون خينشين) على أنه بالنظر إلى مجموعة من عينات متغيرات مستقلة ومتشابهة التوزيع من متغير عشوائي بمتوسط محدود، فإن متوسط العينة يتقارب في الاحتمال مع القيمة المتوقعة<ref>{{harvnb|Loève|1977|loc=Chapter 1.4, p. 14}}</ref>
{{NumBlk||<math display="block">
    \overline{X}_n\ \overset{P}{\rightarrow}\ \mu \qquad\textrm{when}\ n \to \infty.
</math>|{{EquationRef|2}}}}
وهذا هو ، لأي رقم موجب  ''ε''،
<math display="block">
    \lim_{n\to\infty}\Pr\!\left(\,|\overline{X}_n-\mu| < \varepsilon\,\right) = 1.
</math>
بتفسير هذه النتيجة، ينص القانون الضعيف على أنه بالنسبة لأي هامش غير صفري محدد (''ε'')، مهما كان صغيرا، مع عينة كبيرة بما فيه الكفاية، سيكون هناك احتمال كبير جدا أن يكون متوسط الملاحظات قريبا من القيمة المتوقعة. وهذا هو داخل الهامش.
كما ذُكر سابقًا، لاينطبق قانون الضعف الكبير على المتغيرات العشوائية المستقلة والمتشابهة التوزيع فقط، ولكنه ينطبق أيضًا في بعض الحالات الأخرى. على سبيل المثال، يمكن أن يختلف التباين لكل متغير عشوائي في السلسلة، مع الحفاظ على قيمة متوقع ثابتة.
إذا كانت التباينات محدودة، فإن القانون ينطبق، كما هو أوضحه بافنوتي تشيبيشيف عام 1867. (إذا تغيرت القيم المتوقعة خلال السلسلة، فيمكننا ببساطة تطبيق القانون على متوسط الانحراف عن القيم المتوقعة المعنية. ثم ينص القانون على أن هذا التقارب يميل الاحتمال نحو الصفر.) ودليل بافنوتي تشيبيشيف صحيح طالما أن تباين متوسط قيم ''n'' الأولى يتجه إلى الصفر كلما اتجه ''n'' إلى ما لا نهاية.<ref name=EncMath/>
على سبيل المثال، افترض أن كل متغير عشوائي في السلسلة يتبع توزيع احتمالي طبيعي (أو توزيع غاوس) بمتوسط صفر، لكن مع تباين يساوي <math>2n/\log(n+1)</math>
==المصادر==
==المصادر==
{{refbegin}}
{{refbegin}}

مراجعة 14:21، 24 مايو 2024

يُعَدّ قانون الأعداد الكبيرة (LLN) في نظرية الاحتمالات نظرية رياضية تنص على أن متوسط النتائج المُحصَّلة من عدد كبير من العينات العشوائية المستقلة والمتطابقة يقترب من القيمة الحقيقية في حال وجودها.[1] ينص قانون الأعداد الكبيرة رسميًا على أنه إذا كانت لدينا عينة من قيم مستقلة وموزعة توزيعًا متطابقًا فإن متوسط هذه العينة يقترب من المتوسط الحقيقي.

إن قانون الأعداد الكبيرة مهم لأنه يضمن نتائج مستقرة على المدى الطويل لمتوسطات بعض الأحداث العشوائية.[1][2] ومن الأمثلة على ذلك: بينما قد يخسر الكازينو المال في دوران واحد لعجلة الروليت، فإن أرباحه ستميل إلى نسبة مئوية متوقعة على مدار عدد كبير من الدورات.

وإن أية سلسلة انتصارات يحققها لاعب ما ستتغلب عليها معايير اللعبة في نهاية المطاف. ومن المهم أن نعرف أيضا أن قانون الأعداد الكبيرة (كما يشير اسمه) ينطبق فقط عندما نأخذ في عين الاعتبار عددًا أكبر من الملاحظات.

لا يوجد مبدأ يقضي بأن يتطابق عدد قليل من الملاحظات مع القيمة المتوقعة أو أن تتوازن سلسلة من قيمة ما على الفور بالقيم الأخرى (انظر مغالطة المُقامر للاستزادة).

ينطبق قانون الأعداد الكبيرة فقط على متوسط نتائج التجارب المتكررة، ويدعي أن هذا المتوسط يتقارب مع القيمة المتوقعة؛ ولا يدعي أن مجموع عدد (n) من النتائج يقترب من القيمة المتوقعة مضروبة في (n) كلما ازدادت قيمة (n).

عمل العديد من علماء الرياضيات على تحسين هذا القانون على مدار تاريخه، ويُستخدم قانون الأعداد الكبيرة اليوم في العديد من المجالات بما في ذلك الإحصاء ونظرية الاحتمالات والاقتصاد والتأمين.[3]

أمثلة عن قانون الأعداد الكبيرة

ينتج عن رمية نرد واحدة واحد من الأرقام التالية (1، 2، 3، 4، 5، أو 6) ولكلّ منها احتمال مُتساوٍ. ولذلك فإنّ القيمة المتوقّعة لمعدّل الرمياتِ هي:

إذا رُمي عدد كبير من حجار النرد ذات الستة أوجه، فإن متوسط قيمها (الذي يُسمى أحيانًا بالمتوسط العيني) سيقترب من 3.5، وتزداد هذه الدقة كلما زاد عدد النرد المُلقاة.

ينص قانون الأعداد الكبيرة على أن الاحتمال التجريبي للنجاح في سلسلة من تجارب بِرنولي سيتقارب مع الاحتمال النظري. بالنسبة لمتغير عشوائي برنولي، فإن القيمة المتوقعة هي الاحتمال النظري للنجاح، ومتوسط (n) من هذه المتغيرات (على افتراض أنها مستقلة ومتطابقة التوزيع) هو بالضبط التكرار النسبي.

على سبيل المثال، يُعدُّ رمي العملة تجربة بيرنولية. عندما تُقلب عملة عادلة مرة واحدة، فإن الاحتمال النظري لظهور الوجه الأمامي يساوي 12.

لذلك، ووفقًا لقانون الأعداد الكبيرة، يجب أن تكون نسبة ظهور الوجه الأمامي في عدد "كبير" من رميات العملة حوالي 12. وبوجه خاص، فإن نسبة ظهور الوجه الأمامي بعد (n) رمية ستتقارب بالتأكيد إلى 12 عندما يقترب (n) من اللانهاية.

على الرغم من أن نسبة كل من الوجه والظهر تقترب من 12، فإن الفرق المطلق بين عدد مرات الوجه وعدد مرات الظهر سيصبح كبيرًا تقريبًا على الأكيد كلما ازداد عدد الرميات. أي أن احتمال أن يكون الفرق المطلق عددًا صغيرًا يقترب من الصفر مع زيادة عدد الرميات.

كذلك، من المؤكد تقريبًا أن نسبة الفرق المطلق إلى عدد الرميات ستقترب من الصفر. بعبارة أخرى، فإن الفرق المتوقع سيكبر، ولكن بمعدل أبطأ من معدل زيادة عدد الرميات.

مثال آخر جيد على قانون الأعداد الكبيرة هو طريقة مونت كارلو. تمثل هذه الطرق فئة واسعة من الخوارزميات الحسابية التي تعتمد على أخذ عينات عشوائية متكررة للحصول على نتائج عددية. تزداد دقة التقريب بزيادة عدد التكرارات.

تكمن أهمية هذه الطريقة في أنه في بعض الأحيان قد يكون من الصعب أو المستحيل استخدام طرق أخرى.[4]

محدودية قانون الأعداد الكبيرة

قد لا يؤول متوسط نتائج عدد كبير من التجارب في بعض الحالات إلى التقارب. على سبيل المثال، لن يؤول متوسط "n" نتيجة مأخوذة من توزيع كوشي أو بعض توزيعات باريتو (α<1) إلى التقارب بزيادة n. والسبب في ذلك هو ذيول التوزيع الثقيلة.[5]

تُمثل توزيعات كوشي وبريتو حالتين: الحالة الأولى لايوجد قيمة متوقعة لتوزيع كوشي،[6] بينما تكون قيمة توقع توزيع بريتو (α<1) لا نهائية.[7] هناك طريقة واحدة لتوليد مثال يتبع توزيع كوشي وهي عندما تساوي الأرقام العشوائية مماس (ظل) الزاوية موحدة التوزيع بين −90° و +90°.[8] الوسيط هو صفر، لكن القيمة المتوقعة غير موجودة، وبالفعل متوسط "n" من هذه المتغيرات له نفس توزيع أحد هذه المتغيرات. لا يتقارب في الاحتمال نحو الصفر (أو أي قيمة أخرى) حيث يتجه "n" إلى ما لا نهاية.

وإذا كانت التجارب تتضمن تحيزا في الاختيار ، الحالة النموذجية في السلوك الاقتصادي / العقلاني البشري، فإن قانون الأعداد الكبيرة لا يساعد في حل التحيز. وحتى إذا زاد عدد المحاكمات، فإن التحيز في الاختيار لا يزال قائما.

تاريخ قانون الأعداد الكبيرة

يُقال إن عالم الرياضيات الإيطالي جيرولامو كاردانو (1501-1576) صرح بدون إثبات بأن دقة الإحصائيات التجريبية تميل إلى التحسن مع زيادة عدد التجارب.[9][3] صيغ هذا لاحقًا على أنه قانون الأعداد الكبيرة.

كان يعقوب بيرنولي أول من أثبت شكلاً خاصًا لقانون الأعداد الكبيرة (لمتغير عشوائي ثنائي).[10][3] استغرق الأمر منه أكثر من 20 عامًا لتطوير برهان رياضي صارم كافٍ نُشر في كتابه "فن التخمين" (Ars Conjectandi) عام 1713. أطلق عليه اسم "المبرهنة الذهبية" ولكنه أصبح يُعرف عمومًا باسم "مبرهنة بيرنولي". لا ينبغي الخلط بين هذا وبين مبدأ برنولي، الذي سمي على اسم ابن شقيق يعقوب بيرنولي، دانيال بيرنولي.

في عام 1837، وصفه سيميون دينيس بواسون (S. D. Poisson) أيضًا تحت اسم "قانون الأعداد الكبيرة" (la loi des grands nombres).[11][12][3] ومنذ ذلك الحين، أصبح يُعرف بكلتا التسميتين، لكن اسم "قانون الأعداد الكبيرة" هو السائد.

أشكال قانون الأعداد الكبيرة

يوجد نوعان مختلفان لقانون الأعداد الكبيرة: يُسمى الأول قانون الأعداد الكبيرة القوي، والثاني قانون الأعداد الكبيرة الضعيف.[13][1]

بفرض أن X1, X2... تمثل متسلسلة لا نهائية من المتغيرات العشوائية القابلة للتكامل (تكامل لوبيغ) والمستقلة والموزعة توزيعًا متطابقًا مع قيمة متوقعة E(X1) = E(X2) = ... = μ، ينص كلا الشكلين من القانون على أن متوسط العينة:

يتقارب إلى القيمة المتوقعة:

 

 

 

 

(1)

(تعني قابلية تكامل لوبيغ ل Xj أن القيمة المتوقعة E(Xj موجودة وفقا لتكامل لوبيغ وهي محدودة. ولا يعني هذا أن مقياس الاحتمال المرتبط مستمر فيما يتعلق بمقياس لوبيغ.)

غالبا ما تفترض نصوص الاحتمالات التمهيدية تباينا محدودا متطابقا (لجميع ) ولا يوجد ارتباط بين المتغيرات العشوائية. في هذه الحالة ، يكون تباين متوسط المتغيرات العشوائية n:

والتي يمكن استخدامها لاختصار وإيجاز الإثباتات، ولا يلزم افتراض التباين النهائي، إذ إن التباين الكبير أو اللانهائي سيجعل التقارب أبطأ، ولكن قانون الأعداد الكبيرة (LLN) يظل قائما على أي حال.[14]

يمكن استبدال الاستقلال المتبادل للمتغيرات العشوائية بالاستقلال الزوجي [15] أو قابلية التبادل[16] في كلا شكلي قانون الأعداد الكبيرة.

يختص الفرق بين الشكل القوي والشكل الضعيف بنمط التقارب الذي يؤكد عليه. لمعرفة تفسير هذه الأنماط، راجع تقارب المتغيرات العشوائية.

القانون الضعيف

محاكاة توضح قانون الأعداد الكبيرة. تُقلب عملة معدنية حمراء من جانب وزرقاء من الجانب الآخر في كل إطار، وتضاف نقطة في العمود المقابل. يوضح المخطط الدائري نسبة اللونين الأحمر والأزرق. لاحظ أنه على الرغم من أن النسبة تختلف اختلافا كبيرا في البداية، إلا أنها تقترب من 50٪ مع زيادة عدد التجارب.

ينص القانون الضعيف للأعداد الكبيرة (ويسمى أيضا قانون خينشين) على أنه بالنظر إلى مجموعة من عينات متغيرات مستقلة ومتشابهة التوزيع من متغير عشوائي بمتوسط محدود، فإن متوسط العينة يتقارب في الاحتمال مع القيمة المتوقعة[17]

 

 

 

 

(2)

وهذا هو ، لأي رقم موجب ε،

بتفسير هذه النتيجة، ينص القانون الضعيف على أنه بالنسبة لأي هامش غير صفري محدد (ε)، مهما كان صغيرا، مع عينة كبيرة بما فيه الكفاية، سيكون هناك احتمال كبير جدا أن يكون متوسط الملاحظات قريبا من القيمة المتوقعة. وهذا هو داخل الهامش.

كما ذُكر سابقًا، لاينطبق قانون الضعف الكبير على المتغيرات العشوائية المستقلة والمتشابهة التوزيع فقط، ولكنه ينطبق أيضًا في بعض الحالات الأخرى. على سبيل المثال، يمكن أن يختلف التباين لكل متغير عشوائي في السلسلة، مع الحفاظ على قيمة متوقع ثابتة.

إذا كانت التباينات محدودة، فإن القانون ينطبق، كما هو أوضحه بافنوتي تشيبيشيف عام 1867. (إذا تغيرت القيم المتوقعة خلال السلسلة، فيمكننا ببساطة تطبيق القانون على متوسط الانحراف عن القيم المتوقعة المعنية. ثم ينص القانون على أن هذا التقارب يميل الاحتمال نحو الصفر.) ودليل بافنوتي تشيبيشيف صحيح طالما أن تباين متوسط قيم n الأولى يتجه إلى الصفر كلما اتجه n إلى ما لا نهاية.[18]

على سبيل المثال، افترض أن كل متغير عشوائي في السلسلة يتبع توزيع احتمالي طبيعي (أو توزيع غاوس) بمتوسط صفر، لكن مع تباين يساوي


المصادر

  • Grimmett، G. R.؛ Stirzaker، D. R. (1992). Probability and Random Processes (ط. 2nd). Oxford: Clarendon Press. ISBN:0-19-853665-8.
  • Durrett، Richard (1995). Probability: Theory and Examples (ط. 2nd). Duxbury Press.
  • Martin Jacobsen (1992). Videregående Sandsynlighedsregning [Advanced Probability Theory] (بالدنماركية) (3rd ed.). Copenhagen: HCØ-tryk. ISBN:87-91180-71-6.
  • Loève، Michel (1977). Probability theory 1 (ط. 4th). Springer.
  • Newey، Whitney K.؛ McFadden، Daniel (1994). "36". Large sample estimation and hypothesis testing. Handbook of econometrics. Elsevier Science. ج. IV. ص. 2111–2245.
  • Ross، Sheldon (2009). A first course in probability (ط. 8th). Prentice Hall. ISBN:978-0-13-603313-4.
  • Sen، P. K؛ Singer، J. M. (1993). Large sample methods in statistics. Chapman & Hall.
  • Seneta، Eugene (2013). "A Tricentenary history of the Law of Large Numbers". Bernoulli. ج. 19 ع. 4: 1088–1121. arXiv:1309.6488. DOI:10.3150/12-BEJSP12. S2CID:88520834.

المراجع

  1. 1٫0 1٫1 1٫2 Dekking، Michel (2005). A Modern Introduction to Probability and Statistics. Springer. ص. 181–190. ISBN:9781852338961.
  2. Yao، Kai؛ Gao، Jinwu (2016). "Law of Large Numbers for Uncertain Random Variables". IEEE Transactions on Fuzzy Systems. ج. 24 ع. 3: 615–621. DOI:10.1109/TFUZZ.2015.2466080. ISSN:1063-6706. S2CID:2238905.
  3. 3٫0 3٫1 3٫2 3٫3 Sedor، Kelly. "The Law of Large Numbers and its Applications" (PDF).
  4. Kroese, Dirk P.; Brereton, Tim; Taimre, Thomas; Botev, Zdravko I. (2014). "Why the Monte Carlo method is so important today". Wiley Interdisciplinary Reviews: Computational Statistics (بEnglish). 6 (6): 386–392. DOI:10.1002/wics.1314. S2CID:18521840.
  5. Dekking، Michel، المحرر (2005). A modern introduction to probability and statistics: understandig why and how. Springer texts in statistics. London [Heidelberg]: Springer. ص. 187. ISBN:978-1-85233-896-1.
  6. Dekking، Michel (2005). A Modern Introduction to Probability and Statistics. Springer. ص. 92. ISBN:9781852338961.
  7. Dekking، Michel (2005). A Modern Introduction to Probability and Statistics. Springer. ص. 63. ISBN:9781852338961.
  8. Pitman، E. J. G.؛ Williams، E. J. (1967). "Cauchy-Distributed Functions of Cauchy Variates". The Annals of Mathematical Statistics. ج. 38 ع. 3: 916–918. DOI:10.1214/aoms/1177698885. ISSN:0003-4851. JSTOR:2239008.
  9. Mlodinow، L. (2008). The Drunkard's Walk. New York: Random House. ص. 50.
  10. Bernoulli, Jakob (1713). "4". Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis (بLatina). Translated by Sheynin, Oscar.
  11. Poisson names the "law of large numbers" (la loi des grands nombres) in: Poisson, S. D. (1837). Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilitiés (بfrançais). Paris, France: Bachelier. p. 7. He attempts a two-part proof of the law on pp. 139–143 and pp. 277 ff.
  12. Hacking، Ian (1983). "19th-century Cracks in the Concept of Determinism". Journal of the History of Ideas. ج. 44 ع. 3: 455–475. DOI:10.2307/2709176. JSTOR:2709176.
  13. Bhattacharya، Rabi؛ Lin، Lizhen؛ Patrangenaru، Victor (2016). A Course in Mathematical Statistics and Large Sample Theory. Springer Texts in Statistics. New York, NY: Springer New York. DOI:10.1007/978-1-4939-4032-5. ISBN:978-1-4939-4030-1.
  14. "The strong law of large numbers – What's new". Terrytao.wordpress.com. 19 يونيو 2008. اطلع عليه بتاريخ 2012-06-09.
  15. Etemadi، N. Z. (1981). "An elementary proof of the strong law of large numbers". Wahrscheinlichkeitstheorie Verw Gebiete. ج. 55 ع. 1: 119–122. DOI:10.1007/BF01013465. S2CID:122166046.
  16. Kingman, J. F. C. (Apr 1978). "Uses of Exchangeability". The Annals of Probability (بEnglish). 6 (2). DOI:10.1214/aop/1176995566. ISSN:0091-1798.
  17. Loève 1977، Chapter 1.4, p. 14
  18. خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة EncMath