تبديل القائمة
تبديل القائمة الشخصية
غير مسجل للدخول
سيكون عنوان الآيبي الخاص بك مرئيًا للعامة إذا قمت بإجراء أي تعديلات.

الفرق بين المراجعتين لصفحة: «آلة التعلم القصوى»

اآلة التعلم القصوى هي نوع من الشبكات العصبونية ذات تغذية أمامية، تتميز بقدراتها الممتازة في العديد من المهام مثل التصنيف والانحدار والتجميع والتقريب المتفرق والضغط وتعلم الميزات.
لا ملخص تعديل
لا ملخص تعديل
سطر 16: سطر 16:


أظهرت الدراسات أن هذه النماذج قادرة على تحقيق تعميم أفضل وتعلم بمعدلات أسرع بآلاف المرات من الشبكات المستندة إلى الانتشار العكسي. بالإضافة إلى ذلك، أُثبت تفوقها على آلات المتجهات الداعمة في كل من مهام التصنيف والانحدار.<ref>{{cite journal |last1=Huang |first1=Guang-Bin |first2=Qin-Yu |last2=Zhu |first3=Chee-Kheong |last3=Siew |title=Extreme learning machine: theory and applications |journal=Neurocomputing |volume=70 |issue=1 |year=2006 |pages=489–501 |doi=10.1016/j.neucom.2005.12.126 |citeseerx=10.1.1.217.3692|s2cid=116858 }}</ref><ref name=":4">{{Cite journal|last=Huang|first=Guang-Bin; Hongming Zhou; Xiaojian Ding; and Rui Zhang|date=2012|title=Extreme Learning Machine for Regression and Multiclass Classification|url=http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Unified-Learning.pdf|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=42|issue=2|pages=513–529|doi=10.1109/tsmcb.2011.2168604|pmid=21984515|citeseerx=10.1.1.298.1213|s2cid=15037168|access-date=2017-08-19|archive-date=2017-08-29|archive-url=https://web.archive.org/web/20170829025814/http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Unified-Learning.pdf|url-status=dead}}</ref><ref name=":0" /><ref>{{Cite journal|last=Huang|first=Guang-Bin|date=2014|title=An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels|url=http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Randomness-Kernel.pdf|journal=Cognitive Computation|volume=6|issue=3|pages=376–390|doi=10.1007/s12559-014-9255-2|s2cid=7419259}}</ref>
أظهرت الدراسات أن هذه النماذج قادرة على تحقيق تعميم أفضل وتعلم بمعدلات أسرع بآلاف المرات من الشبكات المستندة إلى الانتشار العكسي. بالإضافة إلى ذلك، أُثبت تفوقها على آلات المتجهات الداعمة في كل من مهام التصنيف والانحدار.<ref>{{cite journal |last1=Huang |first1=Guang-Bin |first2=Qin-Yu |last2=Zhu |first3=Chee-Kheong |last3=Siew |title=Extreme learning machine: theory and applications |journal=Neurocomputing |volume=70 |issue=1 |year=2006 |pages=489–501 |doi=10.1016/j.neucom.2005.12.126 |citeseerx=10.1.1.217.3692|s2cid=116858 }}</ref><ref name=":4">{{Cite journal|last=Huang|first=Guang-Bin; Hongming Zhou; Xiaojian Ding; and Rui Zhang|date=2012|title=Extreme Learning Machine for Regression and Multiclass Classification|url=http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Unified-Learning.pdf|journal=IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics|volume=42|issue=2|pages=513–529|doi=10.1109/tsmcb.2011.2168604|pmid=21984515|citeseerx=10.1.1.298.1213|s2cid=15037168|access-date=2017-08-19|archive-date=2017-08-29|archive-url=https://web.archive.org/web/20170829025814/http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Unified-Learning.pdf|url-status=dead}}</ref><ref name=":0" /><ref>{{Cite journal|last=Huang|first=Guang-Bin|date=2014|title=An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels|url=http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Randomness-Kernel.pdf|journal=Cognitive Computation|volume=6|issue=3|pages=376–390|doi=10.1007/s12559-014-9255-2|s2cid=7419259}}</ref>
==تاريخ آلة التعلم القصوى==
ركزت أبحاث آلات التعلم العميق القصوى بين عامي 2001 و 2010 في المقام الأول على إطار تعليم موحد للشبكات العصبونية ذات التغذية الأمامية والطبقة الخفية المفردة (SLFNs) المعممة {{إنج|single-hidden layer feedforward neural networks}}.


بما في ذلك ولكن ليس على سبيل الحصر الشبكات السينية {{إنج|sigmoid networks}}، وشبكات RBF {{إنج|Radial basis function network}}، وشبكات العتبة{{Yk[|threshold networks}}،<ref>{{Cite journal|last=Huang|first=Guang-Bin, Qin-Yu Zhu, K. Z. Mao, Chee-Kheong Siew, P. Saratchandran, and N. Sundararajan|date=2006|title=Can Threshold Networks Be Trained Directly?|url=http://www.ntu.edu.sg/home/egbhuang/pdf/TCASII-ELM-Threshold-Network.pdf|journal=IEEE Transactions on Circuits and Systems-II: Express Briefs|volume=53|issue=3|pages=187–191|doi=10.1109/tcsii.2005.857540|s2cid=18076010|access-date=2017-08-22|archive-date=2017-08-29|archive-url=https://web.archive.org/web/20170829040414/http://www.ntu.edu.sg/home/egbhuang/pdf/TCASII-ELM-Threshold-Network.pdf|url-status=dead}}</ref> والشبكات المثلثية{{إنج|trigonometric networks}}، وأنظمة الاستدلال الضبابي {{إنج|fuzzy inference systems}}، ومتسلسلة فورييه{{إنج|Fourier series}}،<ref name=":1">{{Cite journal|last=Huang|first=Guang-Bin, Lei Chen, and Chee-Kheong Siew|date=2006|title=Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes|url=http://www.ntu.edu.sg/home/egbhuang/pdf/I-ELM.pdf|journal=IEEE Transactions on Neural Networks|volume=17|issue=4|pages=879–892|doi=10.1109/tnn.2006.875977|pmid=16856652|s2cid=6477031|access-date=2017-08-22|archive-date=2017-08-29|archive-url=https://web.archive.org/web/20170829012641/http://www.ntu.edu.sg/home/egbhuang/pdf/I-ELM.pdf|url-status=dead}}</ref><ref>{{Cite journal|last=Rahimi|first=Ali, and Benjamin Recht|date=2008|title=Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning|url=https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf|journal=Advances in Neural Information Processing Systems |volume=21}}</ref> وتحويل لابلاس {{إنج|Laplacian transform}}، وشبكات الموجات{{إنج|wavelet networks}}.


وكانت إحدى الإنجازات الأهم خلال هذه الفترة إثبات القدرات النظرية للتقريب والتصنيف العالمي لآلات التعلم القصوى.<ref name=":1" /><ref name=":2">{{Cite journal|last=Huang|first=Guang-Bin, Lei Chen|date=2007|title=Convex Incremental Extreme Learning Machine|url=http://www.ntu.edu.sg/home/egbhuang/pdf/CI-ELM.pdf|journal=Neurocomputing|volume=70|issue=16–18|pages=3056–3062|doi=10.1016/j.neucom.2007.02.009|access-date=2017-08-22|archive-date=2017-08-10|archive-url=https://web.archive.org/web/20170810165755/http://www3.ntu.edu.sg/home/egbhuang/pdf/CI-ELM.pdf|url-status=dead}}</ref><ref name=":3">{{Cite journal|last=Huang|first=Guang-Bin, and Lei Chen|date=2008|title=Enhanced Random Search Based Incremental Extreme Learning Machine|url=http://www.ntu.edu.sg/home/egbhuang/pdf/EI-ELM.pdf|journal=Neurocomputing|volume=71|issue=16–18|pages=3460–3468|doi=10.1016/j.neucom.2007.10.008|citeseerx=10.1.1.217.3009|access-date=2017-08-22|archive-date=2014-10-14|archive-url=https://web.archive.org/web/20141014020332/http://www.ntu.edu.sg/home/egbhuang/pdf/EI-ELM.pdf|url-status=dead}}</ref>
توسعت الأبحاث في مجال آلة التعلم القصوى (ELM) في الفترة من 2010 إلى 2015 لتشمل إطار تعليم موحد للنواة وشعاع الدعم الآلي {{إنج|Support vector machine}} (SVM) وعددًا من طرق تعلم الميزات النموذجية مثل تحليل العنصر الرئيسي {{إنج|Principal component analysis}} (PCA) وتحليل العوامل غير السلبية (NMF).
أظهرت الدراسات أن شعاع الدعم الآلي غالبًا ما يوفر حلولًا دون المستوى الأمثل مقارنة بـ آلة التعلم القصوى.
علاوة على ذلك، توفر آلة التعلم القصوى نواة "الصندوق الأبيض"، الذي يُنفّذ من خلال تعيين الميزات العشوائية لآلة التعلم القصوى، على عكس نواة "الصندوق الأسود" المستخدمة في شعاع الدعم الآلي {{إنج|Support vector machine}} (SVM). يمكن اعتبار {{إنج|Principal component analysis}} (PCA) وعامل المصفوفة غير السلبية (NMF) حالات خاصة تستخدم عقدًا خفية خطية.<ref>{{Cite journal|last=He|first=Qing, Xin Jin, Changying Du, Fuzhen Zhuang, Zhongzhi Shi|date=2014|title=Clustering in Extreme Learning Machine Feature Space|url=http://www.intsci.ac.cn/users/jinxin/Mypapers/ELM-Neurocomputing-2013.pdf|journal=Neurocomputing|volume=128|pages=88–95|doi=10.1016/j.neucom.2012.12.063|s2cid=30906342 }}</ref><ref>{{Cite journal|last=Kasun|first=Liyanaarachchi Lekamalage Chamara, Yan Yang, Guang-Bin Huang, and Zhengyou Zhang|date=2016|title=Dimension Reduction With Extreme Learning Machine|url=http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Dimensionality-Reduction.pdf|journal=IEEE Transactions on Image Processing|volume=25|issue=8|pages=3906–3918|doi=10.1109/tip.2016.2570569|pmid=27214902|bibcode=2016ITIP...25.3906K|s2cid=1803922}}</ref>




==تاريخ آلة التعلم القصوى==
==خوارزميات آلة التعلم القصوى==
==خوارزميات آلة التعلم القصوى==
==بُنى آلة التعلم القصوى==
==بُنى آلة التعلم القصوى==

مراجعة 20:42، 21 سبتمبر 2024

آلة التعلم القصوى
مشهد تخيلي لآلة التعلم القصوى، صورة مولدة بالذكاء الصنعي

آلة التعلم القصوى (بالإنجليزية: Extreme learning machine)‏ واختصارها (ELM) هي نوع من الشبكات العصبونية ذات التغذية الأمامية التي تتميز بقدراتها الممتازة في العديد من المهام مثل التصنيف والانحدار والتجميع والتقريب المتفرق والضغط وتعلم الميزات.

تستخدم هذه الآلات طبقة واحدة أو طبقات متعددة خفية، حيث تتطلب معلمات العُقد الخفية (وليس فقط الأوزان) ضبطًا. يسمح هذا النهج الفريد لآلات التعلم القصوى بتحقيق تعلم فعال ويتفوق في كثير من الأحيان على الشبكات العصبونية التقليدية.

يمكن تعيين هذه العقد الخفية عشوائيًا وعدم تحديثها مطلقًا (أي أنها عبارة عن إسقاط عشوائي ولكن مع تحويلات غير خطية)، أو يمكن توريثها من أسلافها دون تغييرها.

يتم عادةً تعلم الأوزان الخارجة للعُقد الخفية في خطوة واحدة، ما يمثل في الأساس تدريبًا لنموذج خطي.

آلات التعلم العميق القصوى هي مصطلح صاغه غوانغ-بين هوانغ (بالإنجليزية: Guang-Bin Huang)‏ لوصف هذه النماذج، والتي اقترحها في الأصل للشبكات العصبونية مع أي نوع من العُقد الخفية اللاخطية المستمرة، بما في ذلك الخلايا العصبية البيولوجية وأنواع مختلفة من الدوال الرياضية الأساسية.[1][2]


يمكن إرجاع مفهوم الشبكات العصبونية الاصطناعية إلى فرانك روزنبلات(بالإنجليزية: Frank Rosenblatt)‏، الذي لم يقدم فقط البيرسيبترون (بالإنجليزية: Perceptron)‏ ذي الطبقة الواحدة في عام 1958، بل قدم أيضًا بيرسيبترون متعدد الطبقات، وهي شبكة مكونة من ثلاث طبقات: طبقة الإدخال، طبقة خفية ذات أوزان عشوائيًا تظل ثابتة أثناء التدريب، وطبقة الإخراج التعلمي.[3][4]

أظهرت الدراسات أن هذه النماذج قادرة على تحقيق تعميم أفضل وتعلم بمعدلات أسرع بآلاف المرات من الشبكات المستندة إلى الانتشار العكسي. بالإضافة إلى ذلك، أُثبت تفوقها على آلات المتجهات الداعمة في كل من مهام التصنيف والانحدار.[5][6][1][7]

تاريخ آلة التعلم القصوى

ركزت أبحاث آلات التعلم العميق القصوى بين عامي 2001 و 2010 في المقام الأول على إطار تعليم موحد للشبكات العصبونية ذات التغذية الأمامية والطبقة الخفية المفردة (SLFNs) المعممة (بالإنجليزية: single-hidden layer feedforward neural networks)‏.

بما في ذلك ولكن ليس على سبيل الحصر الشبكات السينية (بالإنجليزية: sigmoid networks)‏، وشبكات RBF (بالإنجليزية: Radial basis function network)‏، وشبكات العتبة{{Yk[|threshold networks}}،[8] والشبكات المثلثية(بالإنجليزية: trigonometric networks)‏، وأنظمة الاستدلال الضبابي (بالإنجليزية: fuzzy inference systems)‏، ومتسلسلة فورييه(بالإنجليزية: Fourier series)‏،[9][10] وتحويل لابلاس (بالإنجليزية: Laplacian transform)‏، وشبكات الموجات(بالإنجليزية: wavelet networks)‏.

وكانت إحدى الإنجازات الأهم خلال هذه الفترة إثبات القدرات النظرية للتقريب والتصنيف العالمي لآلات التعلم القصوى.[9][11][12]

توسعت الأبحاث في مجال آلة التعلم القصوى (ELM) في الفترة من 2010 إلى 2015 لتشمل إطار تعليم موحد للنواة وشعاع الدعم الآلي (بالإنجليزية: Support vector machine)‏ (SVM) وعددًا من طرق تعلم الميزات النموذجية مثل تحليل العنصر الرئيسي (بالإنجليزية: Principal component analysis)‏ (PCA) وتحليل العوامل غير السلبية (NMF).

أظهرت الدراسات أن شعاع الدعم الآلي غالبًا ما يوفر حلولًا دون المستوى الأمثل مقارنة بـ آلة التعلم القصوى.

علاوة على ذلك، توفر آلة التعلم القصوى نواة "الصندوق الأبيض"، الذي يُنفّذ من خلال تعيين الميزات العشوائية لآلة التعلم القصوى، على عكس نواة "الصندوق الأسود" المستخدمة في شعاع الدعم الآلي (بالإنجليزية: Support vector machine)‏ (SVM). يمكن اعتبار (بالإنجليزية: Principal component analysis)‏ (PCA) وعامل المصفوفة غير السلبية (NMF) حالات خاصة تستخدم عقدًا خفية خطية.[13][14]


خوارزميات آلة التعلم القصوى

بُنى آلة التعلم القصوى

نظريات

القدرة على التقريب الشامل

القدرة على التصنيف

العصبونات

المجال الحقيقي

المجال المعقد

الاعتمادية

الجدل حول آلة التعلم القصوى

المراجع

  1. 1٫0 1٫1 خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة :0
  2. Huang، Guang-Bin (2014). "An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels" (PDF). Cognitive Computation. ج. 6 ع. 3: 376–390. DOI:10.1007/s12559-014-9255-2. S2CID:7419259.
  3. Rosenblatt، Frank (1958). "The Perceptron: A Probabilistic Model For Information Storage And Organization in the Brain". Psychological Review. ج. 65 ع. 6: 386–408. CiteSeerX:10.1.1.588.3775. DOI:10.1037/h0042519. PMID:13602029. S2CID:12781225.
  4. Rosenblatt، Frank (1962). Principles of Neurodynamics. Spartan, New York.
  5. Huang، Guang-Bin؛ Zhu، Qin-Yu؛ Siew، Chee-Kheong (2006). "Extreme learning machine: theory and applications". Neurocomputing. ج. 70 ع. 1: 489–501. CiteSeerX:10.1.1.217.3692. DOI:10.1016/j.neucom.2005.12.126. S2CID:116858.
  6. Huang، Guang-Bin; Hongming Zhou; Xiaojian Ding; and Rui Zhang (2012). "Extreme Learning Machine for Regression and Multiclass Classification" (PDF). IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics. ج. 42 ع. 2: 513–529. CiteSeerX:10.1.1.298.1213. DOI:10.1109/tsmcb.2011.2168604. PMID:21984515. S2CID:15037168. مؤرشف من الأصل (PDF) في 2017-08-29. اطلع عليه بتاريخ 2017-08-19.
  7. Huang، Guang-Bin (2014). "An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels" (PDF). Cognitive Computation. ج. 6 ع. 3: 376–390. DOI:10.1007/s12559-014-9255-2. S2CID:7419259.
  8. Huang، Guang-Bin, Qin-Yu Zhu, K. Z. Mao, Chee-Kheong Siew, P. Saratchandran, and N. Sundararajan (2006). "Can Threshold Networks Be Trained Directly?" (PDF). IEEE Transactions on Circuits and Systems-II: Express Briefs. ج. 53 ع. 3: 187–191. DOI:10.1109/tcsii.2005.857540. S2CID:18076010. مؤرشف من الأصل (PDF) في 2017-08-29. اطلع عليه بتاريخ 2017-08-22.
  9. 9٫0 9٫1 Huang، Guang-Bin, Lei Chen, and Chee-Kheong Siew (2006). "Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes" (PDF). IEEE Transactions on Neural Networks. ج. 17 ع. 4: 879–892. DOI:10.1109/tnn.2006.875977. PMID:16856652. S2CID:6477031. مؤرشف من الأصل (PDF) في 2017-08-29. اطلع عليه بتاريخ 2017-08-22.
  10. Rahimi، Ali, and Benjamin Recht (2008). "Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning" (PDF). Advances in Neural Information Processing Systems. ج. 21.
  11. Huang، Guang-Bin, Lei Chen (2007). "Convex Incremental Extreme Learning Machine" (PDF). Neurocomputing. ج. 70 ع. 16–18: 3056–3062. DOI:10.1016/j.neucom.2007.02.009. مؤرشف من الأصل (PDF) في 2017-08-10. اطلع عليه بتاريخ 2017-08-22.
  12. Huang، Guang-Bin, and Lei Chen (2008). "Enhanced Random Search Based Incremental Extreme Learning Machine" (PDF). Neurocomputing. ج. 71 ع. 16–18: 3460–3468. CiteSeerX:10.1.1.217.3009. DOI:10.1016/j.neucom.2007.10.008. مؤرشف من الأصل (PDF) في 2014-10-14. اطلع عليه بتاريخ 2017-08-22.
  13. He، Qing, Xin Jin, Changying Du, Fuzhen Zhuang, Zhongzhi Shi (2014). "Clustering in Extreme Learning Machine Feature Space" (PDF). Neurocomputing. ج. 128: 88–95. DOI:10.1016/j.neucom.2012.12.063. S2CID:30906342.
  14. Kasun، Liyanaarachchi Lekamalage Chamara, Yan Yang, Guang-Bin Huang, and Zhengyou Zhang (2016). "Dimension Reduction With Extreme Learning Machine" (PDF). IEEE Transactions on Image Processing. ج. 25 ع. 8: 3906–3918. Bibcode:2016ITIP...25.3906K. DOI:10.1109/tip.2016.2570569. PMID:27214902. S2CID:1803922.