تبديل القائمة
تبديل القائمة الشخصية
غير مسجل للدخول
سيكون عنوان الآيبي الخاص بك مرئيًا للعامة إذا قمت بإجراء أي تعديلات.

الفرق بين المراجعتين لصفحة: «قانون الأعداد الكبيرة»

ينص قانون الأعداد الكبيرة رسميًا على أنه إذا كانت لدينا عينة من قيم مستقلة وموزعة توزيعًا متطابقًا فإن متوسط هذه العينة يقترب من المتوسط الحقيقي.
لا ملخص تعديل
سطر 13: سطر 13:


==أمثلة عن قانون الأعداد الكبيرة==
==أمثلة عن قانون الأعداد الكبيرة==
ينتج عن رمية نرد واحدة واحد من الأرقام(1، 2، 3، 4، 5، أو 6) ولكلّ منها احتمال مُتساوٍ. ولذلك فإنّ القيمة المتوقّعة لمعدّل الرمياتِ هي:
ينتج عن رمية نرد واحدة واحد من الأرقام التالية (1، 2، 3، 4، 5، أو 6) ولكلّ منها احتمال مُتساوٍ. ولذلك فإنّ القيمة المتوقّعة لمعدّل الرمياتِ هي:
<math display="block"> \frac{1+2+3+4+5+6}{6} = 3.5</math>
<math display="block"> \frac{1+2+3+4+5+6}{6} = 3.5</math>


==المراجع==
==المراجع==

مراجعة 17:15، 14 مايو 2024

يُعَدّ قانون الأعداد الكبيرة (LLN) في نظرية الاحتمالات نظرية رياضية تنص على أن متوسط النتائج المُحصَّلة من عدد كبير من العينات العشوائية المستقلة والمتطابقة يقترب من القيمة الحقيقية في حال وجودها. ينص قانون الأعداد الكبيرة رسميًا على أنه إذا كانت لدينا عينة من قيم مستقلة وموزعة توزيعًا متطابقًا فإن متوسط هذه العينة يقترب من المتوسط الحقيقي.

إن قانون الأعداد الكبيرة مهم لأنه يضمن نتائج مستقرة على المدى الطويل لمتوسطات بعض الأحداث العشوائية. ومن الأمثلة على ذلك: بينما قد يخسر الكازينو المال في دوران واحد لعجلة الروليت، فإن أرباحه ستميل إلى نسبة مئوية متوقعة على مدار عدد كبير من الدورات.

وإن أية سلسلة انتصارات يحققها لاعب ما ستتغلب عليها معايير اللعبة في نهاية المطاف. ومن المهم أن نعرف أيضا أن قانون الأعداد الكبيرة (كما يشير اسمه) ينطبق فقط عندما نأخذ في عين الاعتبار عددًا أكبر من الملاحظات.

لا يوجد مبدأ يقضي بأن يتطابق عدد قليل من الملاحظات مع القيمة المتوقعة أو أن تتوازن سلسلة من قيمة ما على الفور بالقيم الأخرى (انظر مغالطة المُقامر للاستزادة).

ينطبق قانون الأعداد الكبيرة فقط على متوسط نتائج التجارب المتكررة، ويدعي أن هذا المتوسط يتقارب مع القيمة المتوقعة؛ ولا يدعي أن مجموع عدد (n) من النتائج يقترب من القيمة المتوقعة مضروبة في (n) كلما ازدادت قيمة (n).

عمل العديد من علماء الرياضيات على تحسين هذا القانون على مدار تاريخه، ويُستخدم قانون الأعداد الكبيرة اليوم في العديد من المجالات بما في ذلك الإحصاء ونظرية الاحتمالات والاقتصاد والتأمين.[1]

أمثلة عن قانون الأعداد الكبيرة

ينتج عن رمية نرد واحدة واحد من الأرقام التالية (1، 2، 3، 4، 5، أو 6) ولكلّ منها احتمال مُتساوٍ. ولذلك فإنّ القيمة المتوقّعة لمعدّل الرمياتِ هي:

المراجع

  1. Dekking، Michel (2005). A Modern Introduction to Probability and Statistics. Springer. ص. 181–190. ISBN:9781852338961.